Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer

نویسندگان

  • Peter C Ma
  • Mark Greene
  • Volker Sick
  • Matthias Ihme
چکیده

Heat transfer affects the performance and phasing of internal combustion engines. Correlations and equilibrium wallfunction models are typically employed in engine simulations to predict heat transfer. However, many studies have shown that significant errors are expected, owing to the failure of fundamental assumptions in deriving equilibrium wall-function models. Non-equilibrium wall models provide a more accurate way of describing the near-wall region of in-cylinder flows. In this study, simultaneous high-speed high-resolution particle image velocimetry and heat-flux measurements are conducted in an optically accessible engine. The experiments are performed under both motored and fired conditions at two different engine speeds. The experimental data are utilized to assess the performance of different models in predicting the thermoviscous boundary layer. These models include commonly used heat transfer correlations, equilibrium and modified wall-function models, and a recently developed non-equilibrium wall model. It is found that the equilibrium wall-function model significantly underpredicts the heat flux under both motored and fired conditions. By considering heat release effects in the boundary layer, the non-equilibrium wall model is shown to be able to adequately capture the structure and dynamics of both momentum and thermal boundary layers in comparison with experimental measurements, demonstrating its improved performance over previously employed correlation functions and the equilibrium model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modeling and Numerical Investigation of Heat Flux at the External Surface of Cylinder of an Internal Combustion Engine

 Abstract: This study deals with modeling of heat flux at the external surface of combustion chamber wall in an internal combustion (IC) engine as a function of crank angle. This investigation results in an inverse heat conduction problem in the cylinder wall. Alifanov regularization method is used for solving this inverse problem. This problem study as an optimization problem in which a square...

متن کامل

Comparison of Performances for Air-Standard Atkinson and Dual Combustion Cycles with Heat Transfer Considerations

There are heat losses during the cycle of real engine that are neglected in ideal air-standard analysis. In this paper, the effect of heat transfer on the net output work is shown and thermal efficiency of the air-standard Atkinson and the Dual combustion cycles are analyzed. Comparison of performances of the air-standard Atkinson and the Dual combustion cycles with heat transfer considerations...

متن کامل

Simulation of Subcooled Flow Boiling Occurring in Internal Combustion Engine Water Jacket by Numerical Modeling in a Channel with Hot Spot

Boiling heat transfer always has been proposed as a solution for enhancing heat transfer between the fluid and solid surfaces. Subcooled flow boiling is one of the mechanisms that occur in Internal Combustion Engine water jacket in which high amounts of heat is transferred. In this research, it has been tried to simulate subcooled flow boiling in a geometry similar to coolant channel inside the...

متن کامل

Influence of Combustion Condition and Air-Fuel Charge Rotation on Intensity of Heat Transfer in an IC Engine Operating on Gas Fuel

In the Heat Engineering Chair of Poznan University of Technology, there have been investigations carried out for the last 10 years, of heat transfer processes on the wall of a single action internal combustion engine. Investigations of local heat transfer coefficients were carried out in different combustion conditions and the engine was propelled with a methanecarbon dioxide mixture (65% of CH...

متن کامل

Heat Transfer in Internal Combustion Engines

A heat transfer model has been developed that uses quasi-steady heat flux relations to calculate the heat transfer from combustion gases through the cylinder wall to the coolant in an internal combustion engine. The treatment of convective heat transfer accounts for the physical problems of rotating and impinging axial flow inside the engine cylinder. The radiative heat transfer includes gas ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017